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Abstract. We extend the Lax  pair for Kowalewski's top ( K T )  obtained recently by Haine 
and Horozov to the Lie algebras o(4)  and o(3,  1 ) .  The results are expressed in terms of a 
solution of the Neumann system. We derive formulae for the action variables by analogy 
with the e (3)  K T  case and obtain a useful representation for the equations of motion that 
demonstrate explicitly the separation of variables. 

1. Introduction 

In the last few years integrable dynamical systems have become very popular. One of 
the most interesting among them is the Kowalewski top (KT) .  There exists a large 
literature devoted to this system [ l -71.  A few different Lax representations for the KT 

and  some of its generalisations were constructed [l,  5-71. It should be emphasised 
that the Lax representation, in general, is a good starting point for quantisation of a 
dynamical system. 

In  order to understand the internal symmetry of the model, it is important to try 
to analyse any of its integrable deformations or generalisations. In this paper the KT 

is considered on the Lie algebras 0(4), e(3), o (3 , l ) .  Hence, we deal with Kowalewski's 
basis for the hydrogen atom because one can treat the generators of these three algebras 
as the angular momentum and the Runge-Lenz vector for the Coulomb field at different 
energies [3]. 

Recently, Haine and  Horozov [ l ]  reduced the e(3) (standard) KT to the Neumann 
system, obtaining thus a Lax pair for the top. The 3 x 3 Lax pair for the Neumann 
system gives a 3 x 3 pair for the KT. The spectral curve is equivalent to the hyperelliptic 
curve used by Kowalewski to integrate the problem in terms of theta functions. Then 
the Kowalewski equations were derived by means of the standard integration procedure 
of the Neumann system. It appears that their results can be extended completely to  
include our  cases. The top  is reduced to the Neumann system too. We also give the 
action variables for the KT on 0(4), e(3),  o(3, 1) and useful representation for the 
equations of motion in new variables closely connected with the action variables. 

2. The generalised Kowalewski top and the Neumann system 

Let us consider a classical dynamical system on the orbits of the Lie algebra 8 with 
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generators J I ,  x , ,  i = 1 ,2 ,3 ,  obeying the following Poisson brackets ( 8  = constant) 

{ J t ,  J ,}  = &,,kJk { J t ,  x i)  = &x/kXI.  

{ X I ,  X / I  = -p&,,I.Jk. 

We distinguish the orbits by fixing the values of the Casimir elements 

1 = c J,x, a’ = c (x ,x ,  - 9 J , J l ) .  
I I 

For the special cases 9 = 0, * l  8 is the Lie algebra of the Euclid group E(3), the 
group of four-dimensional compact rotations O ( 4 )  and the Lorentz group O ( 3 , l )  
respectively: 

p z - 1  

‘if= e ( 3 )  9 = 0  ( 3 )  
O ( 3 ,  1 )  8=1. 

( 4 )  

r4) 
The Hamiltonian of the KT on the orbits of the algebra 8 is ( b  = constant) 

H =  J : +  J :+2J: -2bx I .  

The dynamical equations are determined by the rule 

d 
dt  
- = i { H ,  .} .  

The additional integral of motion that commutes with H has the form 

K = k+k- k ,=J:+2bx,-9b2 

J , = J , i i J ,  x ,  = x 1  * ix’ 

{ H ,  K } = O .  ( 7 )  
Thus we consider the integrable system on the orbits of the algebra 8 given by two 
integrals of motion ( 4 )  and (6). For the special case 9 = 0 we have the standard KT. 

For further generalisations of the system to the gyrostat and its quantum counterparts 
see [3 ,4 ,8] .  

Following [l] ,  we now proceed to the reduction of the top to Neumann’s system. 
New variables 

- bx3 J3J+ J -  + b ~ 3 (  J+ + J - )  
z5 = - z6 = 

53 
24 = - 

J+ - J -  J+ - J -  J+ - J- 

are introduced. They satisfy the quadratic relations: 

q 1 = z : - 4 z , z 3 = 1  

q3 = (H + 29b2)z123 +2blzlzz+ 2b2Gz: -+9b2z :  - 2 ~ :  -;z: - 2z,z6=O 

4 2  = zIz6-k z2z5 - z3z4= 0 

( 9 )  

q4= 8b2z:[(H + 9b2)G-212] + ( H  + 9b2) (49b2z , z3  - 2 z i - 8 2 : )  -4b2G(4z:+ z:) 

- 8 b l ( ~ 2 ~ 3 + 4 ~ 4 ~ ,  - 9 b 2 z , z ~ ) + 4 z ~ -  9 2 b 4 ~ : - 8 9 b ’ ~ 4 ~ 6 =  K 
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where we denote 

a’= a 2 -  K/4b’+ PH/2+ b29?/4 .  

The dynamical equations for z = ( z ,  , . . . , z6)‘ have the form 

i = i iM0,q3 (10) 

where 
0 z1 -22, 0 21 -22 

-F‘ G 

From the z h ,  we go further to new variables p I ,  I ,  ( i  = 1,2 ,3)  defined as [ l ]  

p2 = zJ2i p3 = ( z I  - z 3 ) / 2 i .  
11 =(24-26)/2 l2  = z5 /  i 13=(z4+zg)/2i 

{ I , ,  41’ = El& il!, P i } ’ =  EijkPk (13) 

{PI ,  P i } ’ =  0. 

(12) 
P I  = (ZI + Z 3 ) / 2  

and postulate new Poisson brackets of the Lie algebra e(3) for p , ,  I ,  : 

The Casimir elements of the algebra e(3) (13) are 

c i /,Pi = -4212 = 0 
i 

where (9) are employed. Obviously the primed brackets (13) cannot be derived from 
the old ones (1). 

The dynamical equations for the vector 6 = ( p l ,  p 2 ,  p 3 ,  11, 1 2 ,  13)‘ are 

i = ti T(S)Ogq3 (15) 

where 

Using the explicit form of q 3 ,  the system (15) is 

p = 2i l h p  i = 2i ~ p n p  (17) 

where the matrix Q = Q‘ 
-$+b2a‘  ibl i(a+b2i?) 

i ($+ b2Z) -bl 4 -  b2a’ 
Q = (  i b l  - H / 2  -bl 1 

depends only on constants of the motion and is thus itself constant. Equations (17) 
are a direct consequence of the changes of variables J , ,  xi + z, , . . . , z6+ p, ,  1, at the 
fixed values of the Casimir elements (2) and the constants of motion H, K (4) and 
(6). On the other hand, (17) can be treated as Hamiltonian equations on the orbits 
of the auxiliary algebra e(3) given by equations (13) and (14) with a new Hamiltonian 

(19) iq, = i(21’+ 2(Qp, p )  - f ( H / 2 +  9 b 2 ) )  = O  



044 I V Komarov and V B Kuznetsov 

according to the rule d / d t  =; (iq3, a } ’ .  An additional integral of motion in involution 
with q3 ( H  = constant) is 

q4= -16(Qf,1)+16det Q ( Q - ’ p , p ) + 9 ’ b 4 =  K. (20) 

Thus we have connected the generalised KT to the integrable Neumann system with 
the special values of the constants of motion according to (14), (19) and (20) that are 
expressed in terms of the Hamiltonian and the additional integral of the KT. A Lax 
representation is known for the Neumann system [9]. From this follows a Lax pair 
for the generalised KT 

&(U) = [ W U ) ,  &(U)] (21) 

Y ’ ( U ) = Q + L U - N U ?  d ( u ) = - 2 i ( Q u - ’ + ~ )  (22) 

where [ , . ]  is a matrix commutator, 

U E C is a spectral parameter, Q and L are defined by (18) and (16), respectively, and 
the matrix N is equal to 

(23) N . .  = N = p @ p  q PiP,. 

Equation (21) is a Lax representation (with a spectral parameter) of (17) and, hence, 
of the initial equations for the generalised KT too. 

The spectral curve r: det (Y’( U )  - A I )  = 0, where qr = 0 is assumed according to ( 9 ) ,  
is a hyperelliptic genus-2 curve: 

u2[(A -Yb’)2 /4-K/16]-P~(A)=0.  

P3(A)=(A  +H/2)(A2+b2G)-b212. 

For 9’ = 0 the curve (24) is equivalent to the familiar Kowalewski curve [l]. 

3. Separated equations and action variables 

Let us consider the intersection of the two curves r and ?: 
det( Q+ Lu - N u 2 - A I )  = 0. 

det( Q + Lu - A Z )  = 0. 

Notice that f is a curve associated with the Euler top for which the Lax matrix in (21) 
is 9 = Q + Lu. From (25) the equation for A follows: 

A’+ A(H/2 -4(Qp, p ) )  -4  det Q(Q- ’p ,  p )  = 0. (26) 

It is easy to see that the quadratic equation (26) in the case P = 0 coincides with the 
definition of the separated variables for the standard KT. Further, one can always 
diagonalise the matrix Q + 0 = diag ( a ,  ;a,, a 3 )  = RQR-’ by the corresponding rotation 
R of the vectors p and I :  f i  = Rp, 1 = RI. Then (26), divided by det (0 - A I )  = 
( A  - a , ) ( A  - a , ) ( A  - a 3 ) ,  becomes 

A -2 

+-=O. +- P ?  
A - a ,  A - a ,  A - a ,  
8 
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Now the dynamics of two roots A i ,  A 2  of (26) can be derived by the integration 
procedure of the Neumann system [ l ]  

&$, (Al  - A , )  =2(-RS(A,))”’ e,  = (-1)’+’ 

R5(A)= P 2 ( A ) P 7 ( A )  (28) 

= [ ( A  -9b2/2)’-K/4][(A+ H/2)(A’+b26)- b2I2]. 

Equations (28) generalise the familiar Kowalewski equations. 
To obtain action variables we have to restore the Hamiltonian structure of (28) in 

the same way as we did it in the e(3) case [2]. As a result the Lagrange variables A , ,  A ,  
turn into the Hamiltonian ones s,, p , ,  i = 1,2, 

x, = 2(yf+ d,y,)l’’ 

d, = 4 b 2 ( a ’ + ~ s , / 2 - 2 l 2 / s , ) .  

y ,  = (s, - Bb2-  H)?-  K (29) 

Then the action variables have the form 

s, =I, P ( S )  ds 

where a, are a-cycles of the Jacobi variety of the algebraic curve w 2  = -R,(s), where 
R5(s) is defined by (28). The action is a sum of the two items SI and S2 depending 
on sI and s 2 ,  respectively. So we have a separation of variables. 

In terms of the Hamiltonian variables s,, p , ,  i = 1,2,  (28) look like 

s : - ( 2 H + 9 b 2 ) s f + x s ,  -4b212=2b’(a’s,+$Psf/2-212) cos[2(2s,)”’p,] 

x = ( H  + 96’)’- K + 2 b 2 a 2  

that demonstrate explicitly the separation of variables. 
Like the e(3) case we rewrite the separated equations (31) in terms of generators 

of the direct sum of two Lie algebras of rank 1. Instead of p , ,  s, let us introduce new 
variables: 

(31) 

U, = ( & ) I  m: = e~p(*i22~”u,p,)  (32) 

that obey e ( 2 ) 0 e ( 2 )  Poisson brackets 

The invariant Casimir elements are equal to m ; m ;  = 1. Equations (31) turn into 
( i = 1 , 2 )  

U:- ( 2 H  + ~ b 2 ) u ~ + x u f - 4 b 2 1 2  = b‘(a’uf+ Bu:‘/2-212)(m:+ my). (34) 

Having the action variables (30) one can consider quasiclassical quantisation of 
These equations have the form typical for the R matrix method [ 10, 113. 

the generalised KT as in the e(3) case [2]. 
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4. Discussion 

Our results are closely connected with quantisation of the KT. The integrals of motion 
for the quantum KT are known [3], so by quantisation we mean the way of calculating 
their spectrum. Quasiclassical quantisation of the KT was carried out recently [2] and 
using formulae given in section 3 these results can be easily repeated for the algebras 
o(4) and o(3, 1). In contrast, the corresponding procedure for the quantum mechanics 
case is not yet known. In principle, such a procedure must be a consequence of a Lax 
representation. For the KT four Lax pairs are known [1,5-71. The Lax pair of 
Perelomov [6] does not depend on a spectral parameter. As we proved here the Lax 
pair of Haine and Horozov [ 13 admits a generalisation to the o(4) and o (3 , l )  algebras, 
but non-canonical transformation to new variables is needed. Adler and  van Moerbeke 
[7] introduced a Lax pair that connected the KT and the Manakov top. It is also based 
on a non-canonical transformation. 

The Lax pair of Reyman and  Semenov-Tian-Shansky [5] seems to be the best 
candidate for quantisation, though it is not clear how to extend it to the algebras o(4) 
and o(3, 1). 
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